Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence

نویسندگان

  • Marc K Etherington
  • Jamie Gibson
  • Heather F Higginbotham
  • Thomas J Penfold
  • Andrew P Monkman
چکیده

Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor-acceptor charge transfer molecules, where spin-orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules

Factors influencing the rate of reverse intersystem crossing (krISC ) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third-generation heavy-metal-free organic light-emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and ...

متن کامل

Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.

The temperature dependent rate of a thermally activated process is given by the Arrhenius equation. The exponential decrease in the rate with activation energy, which this imposes, strongly promotes processes with small activation barriers. This criterion is one of the most challenging during the design of thermally activated delayed fluorescence (TADF) emitters used in organic light emitting d...

متن کامل

A new way towards high-efficiency thermally activated delayed fluorescence devices via external heavy-atom effect

Thermally activated delayed fluorescence (TADF) mechanism is a significant method that enables the harvesting of both triplet and singlet excitons for emission. However, up to now most efforts have been devoted to dealing with the relation between singlet-triplet splitting (ΔEST) and fluorescence efficiency, while the significance of spin-orbit coupling (SOC) is usually ignored. In this contrib...

متن کامل

Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters

Regio- and conformational isomerization are fundamental in chemistry, with profound effects upon physical properties, however their role in excited state properties is less developed. Here two regioisomers of bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide, a donor-acceptor-donor (D-A-D) thermally-activated delayed fluorescence (TADF) emitter, are studied. 2,8-bis(10H-phenothiazin-...

متن کامل

The Role of Local Triplet Excited States and D‐A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices

Here, a comprehensive photophysical investigation of a the emitter molecule DPTZ-DBTO2, showing thermally activated delayed fluorescence (TADF), with near-orthogonal electron donor (D) and acceptor (A) units is reported. It is shown that DPTZ-DBTO2 has minimal singlet-triplet energy splitting due to its near-rigid molecular geometry. However, the electronic coupling between the local triplet (3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016